
1 
 

AutoDock CrankPep: Combining folding and docking to predict protein-

peptide complexes 

Yuqi Zhang1, and Michel Sanner1* 

1Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 

La Jolla, California, United States of America 

*To whom correspondence should be sent. E-mail:  sanner@scripps.edu 

Keywords: Peptide docking; Protein-protein interactions; Monte Carlo search. 

Abstract 

Protein-peptide interactions mediate a wide variety of cellular and biological functions. Methods 

for predicting these interactions have garnered a lot of interest over the past few years, as 

witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in 

clinical trials. The size and flexibility of peptides has shown to be challenging for existing 

automated docking software programs. Here we present AutoDock CrankPep or ADCP in short, a 

novel approach to dock flexible peptides into rigid receptors. ADCP folds a peptide in the 

potential field created by the protein to predict the protein-peptide complex. We show that it 

outperforms leading peptide docking methods on two protein-peptide datasets commonly used for 

benchmarking docking methods: LEADS-PEP and peptiDB, comprised of peptides with up to 15 

amino acids in length. Beyond these datasets, ADCP reliably redocked a set of protein-peptide 

complexes containing peptides ranging in lengths from 16 to 20 amino acids. The robust 

performance of ADCP on these longer peptides enables accurate modeling of peptide-mediated 

protein-protein interactions and interactions with disordered proteins. 

Availability: 
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ADCP is distributed under the LGPL 2.0 open source license and is available at 

http://adcp.scripps.edu. The source code is available at https://github.com/ccsb-scripps/ADCP. 

Introduction 

Protein-peptide interactions are essential to many biological functions (Petsalaki and Russell, 

2008). Thus, peptide-based therapeutic approaches have recently attracted increasing interest 

(Fosgerau and Hoffmann, 2015; Lau and Dunn, 2018). Moreover, many protein-protein 

interactions, especially the ones involving intrinsically disordered proteins, are mediated by a 

peptide-like segment (Wright and Dyson, 2014; Stein and Aloy, 2008). Predicting protein-peptide 

interactions using automated docking methods remains challenging mainly due to the 

significantly larger number of rotatable bonds in peptides, making them more flexible than small 

drug-like molecules. Small molecule docking methods have been shown to perform rather poorly 

for peptides longer than 5 amino acids (Rentzsch and Renard, 2015; Hauser and Windshügel, 

2016). Meanwhile, efforts have been put into developing accurate and efficient peptide docking 

methods (London et al., 2013; Ciemny et al., 2018). These methods can be segregated into the 

following three categories:  template docking, ensemble docking, and de novo methods (see Table 

1). 

The success of template docking methods for docking peptides (Lee et al., 2015) depends on the 

availability of homologue structures for both the receptor and the peptide , thus limiting the range 

of their applicability. Ensemble docking methods sample peptide conformations as a pre-

processing step without knowledge of the receptor. Next, these conformations are docked rigidly 

or semi-rigidly into the receptors (Zhou, Jin, et al., 2018; Zhou, Li, et al., 2018; Schindler et al., 

2015; Yan et al., 2016). While, these methods yield good accuracy for small and medium sized 

peptides (typically ≤ 9 amino acids), their success rates tend to drop rapidly with longer 

peptides. Finally, de novo methods sample the peptide’s conformation on-the-fly during the 

http://adcp.scripps.edu/
http://adcp.scripps.edu/
https://github.com/ccsb-scripps/ADCP
https://github.com/ccsb-scripps/ADCP
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docking (Ben-Shimon and Niv, 2015; Raveh et al., 2011; Alam et al., 2017; Trellet et al., 2013; 

Kurcinski et al., 2015). While de novo methods yield high accuracy and are less affected by the 

length of the peptides, these methods are often computationally expensive and often rely on 

lengthy molecular dynamics simulations to refine solutions. 

Table 1. Summary of three categories of peptide docking methods 

Category Peptide 

Flexibility 

                          Description          Examples 

Template 

Docking 

None or little Use sequence-based homology model to predict 

docking poses 

GalaxyPepDock 

 

Ensemble 

Docking 

Conformation 

ensemble 

Prepare a conformation ensemble to describe 

peptide flexibility and then dock the conformations 

back into receptor 

HPepDock 

MDockPep 

pepATTRACT 

De novo 

Method 

Fully flexible Model peptide flexibility with the respect to the 

receptor 

ADCP 

AnchorDock 

CABS-Dock 

FlexPepDock 

HADDOCK 

 

Here we present AutoDock CrankPep or ADCP in short, an efficient de novo method for protein-

peptide docking that folds the peptide in the potential energy landscape created by a given 

receptor. ADCP provides an efficient and accurate way to dock flexible peptides into rigid 

receptors. We show that it achieves 85.7% success rate on the LEADS-PEP dataset within its top 

10 predictions. Furthermore, while existing peptide docking methods have typically limited 

themselves to peptides with less than 16 amino acids, we evaluate ADCP’s ability to dock a set of 

peptides ranging in length from 16 to 20 amino acids. For these peptides, ADCP achieves re-

docking success rates of 64% and 91% when considering the top or top 5 solutions, respectively. 

These results indicate that ADCP is a robust peptide docking tool that can be used to model 

protein-protein interactions mediated by protein segments such as loops or disordered fragments. 

Methods 

Small molecule docking methods typically perform best with ligands containing less than 20 
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rotatable bonds (Hauser and Windshügel, 2016; Rentzsch and Renard, 2015). Peptides with 5 or 

more amino acids can easily exceed this number. A medium sized peptide of 10 amino acids 

typically has around 40 rotatable bonds, rendering these methods ineffective. 

CRANKITE is an efficient software package originally developed for protein and peptide 

conformation sampling and folding (Podtelezhnikov and Wild, 2005; Várnai et al., 2013; Burkoff 

et al., 2012; Podtelezhnikov and Wild, 2008). It samples conformational space of proteins or 

peptides using a Metropolis Monte Carlo (MC) search and a Gō-Type representation of amino 

acid side-chain (Takada, 1999; Taketomi et al., 1975). CRANKITE can rapidly explore the 

conformational space of sequences of amino acids by performing the two MC moves illustrated in 

Figure 1:  i) a crankshaft motion along two selected Cα atoms and ii) a rotation near the end of the 

chain. 

 

Figure 1. CRANKITE’s Monte Carlo moves. A crankshaft motion along two selected Cα atoms or 

a rotation near the end of the chain. 

ADCP combines CRANKITE’s conformation sampling ability with the AutoDock representation 

of a rigid receptor (Huey et al., 2007; Morris et al., 2009) to concurrently optimize the peptide 

conformation and its interactions with the receptor, thus yielding docking poses. ADCP was 
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implemented based on CRANKITE. The notable modifications and additions are as follows: i) the 

addition of new MC moves to boost the exploration of peptide position and orientation relative to 

the receptor; ii) the addition of an energy term based on the AutoDock affinity grids to describe 

the peptide-receptor interactions; iii) the use of a rotamer library to interactively construct side-

chain atoms (Dunbrack  Jr and Cohen, 1997); and iv) the addition of a pose cache swapping 

mechanism to enhance the search. 

The overall workflow of the MC procedure implemented by ADCP is depicted in Figure 1. First, 

a randomly selected MC move is applied to alter the current pose. The altered pose is then scored, 

and the move is either accepted or rejected based on a metropolis-like MC criterion. If the move 

is rejected, the pose before the move is restored and another move is attempted. If it is accepted, 

the altered pose becomes the current one and is used to update the cache of docking poses. This 

procedure repeats until one of the termination criteria is met. More details about the various 

elements of this workflow are provided below. 

Input: ADCP requires a description of the receptor and the peptide.  The receptor is represented 

by affinity maps calculated using AutoGridFR (Ravindranath et al., 2015). AutoGridFR produces 

a single zip file that contains affinity maps for all atom types in the peptide calculated by 

AutoGrid4 (Morris et al., 2009), along with metadata about the docking box (e.g. the size and 

position of the box, A list of favorable locations in the affinity called translational points, etc.). 

The peptide can be specified as a 3D structure in the PDB file format or by its sequence of amino 

acids. In the latter case, a starting conformation is constructed automatically. This initial 

conformation can be generated in an extended or alpha helical conformation using lowercase and 

uppercase letters respectively. The user can also specify the maximum number of MC steps for 

the simulation. As conventional docking methods can dock short peptides with reasonable 

accuracy, ADCP was designed to support peptides with 5 or more amino acids. 
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Figure 2. Flow chart of AutoDock CrankPep Monte Carlo procedure. 

Monte Carlo moves: During the MC search the docking pose is modified using MC moves. We 

extended the original set of MC moves with: i) a local translation to perturb the peptide position; 

and ii) a translational jump that translates the peptide to move a central peptide atom called the 

“root atom” to a new “translational point” in the docking box (Figure S1). The “translational 

points” are a set of positions with high affinities identified by AutoGridFR (Ravindranath and 

Sanner, 2016). These moves were added to facilitate the peptide’s exploration of the potential 

field created by the receptor. Each MC move will trigger the reconstruction of the all-atom 

representation of the side-chain using a rotamer library (see below). 

Scoring Function: The scoring function of ADCP consists of two components: a score for the 

conformation of the peptide; and a score for the interaction between the peptide and the receptor. 

We will refer to these scores as the internal and the interaction scores, respectively. The internal 
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score is based on CRANKITE’s Gō-Type potential  (Podtelezhnikov and Wild, 2005, 2008) where 

each side-chain is represented by a single bead. We extended the internal score function with a 

new term based on Ramachandran propensities for backbone φ and ψ angles (Lovell et al., 2003). 

These Ramachandran propensities are transformed into energies according to the Boltzman 

distribution. The interaction score between the peptide and the protein is calculated using the 

AutoDock affinity grids. Calculating this score requires a full-atom representation of the peptide 

which is constructed using a rotamer library (Dunbrack  Jr and Cohen, 1997). Every time a pose 

is scored, we iterate over the peptide either forward (N to C-terminus) or backwards (C- to N-

terminus) with the same probability. For each amino acid, we construct all rotameric 

conformations and score them using the affinity grids while avoiding clashes with the peptide 

backbone and already built side-chains. The energetically most favorable side-chain conformation 

is selected to represent this amino acid. Once the full atom representation of the peptide is built, 

the interaction score between the peptide and the receptor is obtained by summing up the scores 

from the affinity grids for all atoms in the peptide.  

Monte Carlo Criterion: ADCP uses a metropolis-like MC criterion given in equation 1 to accept 

a move 

  𝑒𝑥𝑝(−𝑘𝑇∆𝐸 × 𝐻𝑖𝑙𝑙𝐶𝑙𝑖𝑚𝑏) > 𝑟𝑎𝑛𝑑𝑜𝑚                    (Equation 1) 

 where: ΔE is the score difference between the pose before and after the MC move; kT is a 

temperature factor that can be used to adjust the probability of the MC criteria; and random is a 

random number ranging from 0.0 to 1.0. We found that the traditional metropolis MC criterion 

did not yield an efficient exploration of solution space. The HillClimb term was introduced to 

boost the search power. If the score worsens by more than 5.9 kcal/mol (10 kBT at room 

temperature), HillClimb is set to 0.05, otherwise HillClimb remains at 1. With this hill climbing 

feature, a score increase of 5.9 kcal/mol has a 60.6% probability to be accepted, and a score 
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increase of 11.8 kcal/mol has 36.8% chance to be accepted, and so on. Using a HillClimb factor 

ranging from 0.05 to 0.20 does not affect the results substantially. 

Pose cache update: The presence of the receptor creates a complex energy landscape for the 

peptide to fold while maximizing its interaction with the receptor. We found that the traditional 

MC search often got stuck in local minima. Thus, we implemented the pose cache to maintain a 

pool of docking poses encountered during the search and restart the search under certain 

circumstances. Every pose accepted by the Metropolis criterion is compared with the ones present 

in the cache and can: either be added to the cache (e.g. if it has the best energy found so far) or it 

can replace an entry in the cache (e.g. a similar solution is in the cache but with a worse energy). 

More details on this process are provided in Chart S1. Every time a pose improves on the best 

score seen so far, it is appended to the output multi-model pdb file. If the search generates 

100,000 consecutive poses each having a score 3 kcal/mol higher than the best score found so far, 

or the best score has not improved for one million steps, the search restarts from a randomly 

selected pose from the cache. 

Termination criteria: The program stops if the maximum number of steps is reached or the best 

score has not been improved for 10 million steps. 

Using the software: The affinity maps are calculated using AutoGridFR for a user-defined 

docking box. The results presented here were docked with a 4 Å padding on every side of the 

peptide. The stochastic nature of the MC search is usually addressed by performing multiple 

searches called replicas. The number of replicas is specified by the user in ADCP. Unless 

otherwise specified, the results presented here were obtained using 80 replicas with 60 

simulations started from extended conformations and 20 simulations started from helical 

conformations constructed from amino acid sequence. Each replica performed 3 million MC steps 

per amino acid in the peptide (i.e., 15 million steps for a 5-mer peptide and 36 million steps for 

12-mer peptide, etc.). While we routinely observed conformational changes between helical 



9 
 

conformation and extended conformation and vice versa during the MC runs, we found that 

statistically, starting the MC with a mix of initial conformation speeds up the process of 

identifying the correct solution. Users can customize these parameters according to their specific 

needs. We suggest using more replicas and longer simulations for larger peptides and/or larger 

docking boxes. 

After all replicas finish their search, the docking poses are clustered to produce the final docking 

poses. The clustering can be performed using the AutoDockFR clustering algorithm 

(Ravindranath et al., 2015; Morris et al., 2009), or using pairs of peptide-receptor residues in 

contact. See the supplementary information for a detailed description of this contact-based 

clustering algorithm. 

Datasets: 

The peptiDB (London et al., 2010) and LEADS-PEP (Hauser and Windshügel, 2016) protein-

peptide datasets have been widely used for benchmarking peptide docking methods (Zhou, Li, et 

al., 2018; Raveh et al., 2011; Tubert-Brohman et al., 2013). PeptiDB contains 102 protein-

peptide complexes varying from 3 to 15 amino acids. We benchmarked ADCP with the Glide SP-

PEP dataset (Tubert-Brohman et al., 2013), a subset of peptiDB comprised of 19 high-quality, 

non-α-helical systems ranging from 5 to 11 amino acids. The Glide SP-PEP dataset has been used 

to benchmark FlexPepDock, Glide SP-PEP, and HPepDock. The LEADS-PEP dataset is a more 

recent, and manually curated dataset of 53 complexes with peptides ranging from 3 to 12 amino 

acids. In this study we used the subset of 42 complexes from LEADS-PEP containing peptides 

with 5 or more amino acids. We consider the peptides in these datasets as medium-sized peptides 

for docking purposes. 

Current available peptide docking methods are mostly tested on peptides with15 amino acids or 

less. To further test ADCP, we compiled at set of 11 protein peptide complexes from the protein 
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data bank (PDB) (Berman et al., 2000) with longer peptides ranging in length from 16 to 20 

amino acids. These structures were obtained by selecting PDB entries with crystallographic 

resolution of 2.2 Å or better and containing a peptide comprised of 16 to 20 standard amino acids. 

The peptides in this set are neither cyclic nor covalently bound to the receptor; they have no 

significant clashes between peptide and receptor atoms and have no significant contacts between 

the peptide and crystal mates of the receptor. These complexes are listed in Table S1. 

Success metrics:  

All atom Root-Mean-Square Deviation (RMSD) is typically used to assess success while docking 

small molecules. As ligands grow larger this metric becomes less appropriate and RMSD of 

backbone atoms (N, CA, C) has been used for assessing docking success rate for small peptides 

(Méndez et al., 2003; Irving et al., 2000). For instance, (Hauser and Windshügel, 2016; Zhou, Li, 

et al., 2018) used a 2.5 Å backbone RMSD cutoff to define successful peptide redocking on the 

Lead-Pep dataset. Other studies (Raveh et al., 2011; Tubert-Brohman et al., 2013) used the 

iRMSD (interface RMSD) defined as the RMSD of the backbone atoms of the “interface 

residues”. Interface residues are amino acids of the peptide having their Cβ atom within 8 Å of 

any receptor Cβ atom. Poses with iRMSD values under 3.0 Å are typically considered to be 

successful dockings. To facilitate the comparison with other methods, we used the same metric as 

used in previously published studies, i.e. backbone RMSD for comparison on the LEADS-PEP 

dataset and iRMSD for the Glide SP-PEP dataset. 

When docking longer peptides, RMSD-based metrics do not provide a precise measure for 

success. For these cases, we assess success using native contacts: a metric borrowed from the 

protein-protein docking field (Méndez et al., 2003; Irving et al., 2000). Native contacts are 

defined as the list of all pairs of peptide-receptor amino acids located within 5 Å of each other. 

Similar to (Méndez et al., 2003; Yan et al., 2016; Peterson et al., 2017), we identify successful 
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redockings of peptides ranging from 16 to 20 amino acids in length when the docking poses 

reproduce more than 50% of the native contacts (i.e. fnc > 0.5). 

Results and Discussion 

We compared the success rate of ADCP with previously published results from leading peptide 

docking methods on the datasets containing medium size peptides (i.e. up to 12 amino acids). We 

also demonstrate that ADCP achieves remarkable success rates in rdocking longer peptide (i.e. up 

to 20 amino acids).  

Accurate docking of medium size peptides 

HPepDock (Zhou, Jin, et al., 2018; Zhou, Li, et al., 2018) is a recent peptide docking method that 

falls into the ensemble docking category. It uses MODPEP (Yan et al., 2017) to generate 1,000 

peptide conformations and then docks these peptide conformations semi-rigidly using MDock 

(Huang and Zou, 2006). HPepDock has been shown to achieve better accuracy than traditional 

small-molecule docking methods as well as other leading peptide docking methods including 

FlexPepDock, Glide-SP-PEP, HADDOCK and pepATTRACT (Zhou, Li, et al., 2018; Zhou, Jin, et 

al., 2018). As such, it can be considered the state of the art at the time of writing this paper. Here 

we compare the success rates of ADCP with the HPepDock results on these datasets using the 

same metrics. For the complexes from the LEADS-PEP dataset, ADCP consistently outperforms 

HPepDock as shown in Figure 3. Considering the top 10 solutions, ADCP achieves 85.7% 

success rate for this dataset compared to 66.7% for HPepDock. ADCP significantly improves 

success rate at 1.0 Å RMSD cutoff, predicting 76.2% of the systems with a sub-angstrom 

backbone RMSD precision within top 1000 predictions, and 100% systems have a successful 

prediction model (backbone RMSD ≤ 2.5 Å). The system-specific comparison is provided in 

Table S2. 
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Figure 3. The comparison of success rates for ADCP and HPepDock with different success 

criteria. Blue solid line represents the success rate for ADCP if top 1000 solutions are considered 

and blue dashed line represents the success rate if top 10 solutions are considered. Red solid and 

dashed lines represent the success rate for HPepDock if top 1000 solutions and top 10 solutions 

are considered, respectively. 

HPepDock’s performance deteriorates significantly for the longer peptides in this data set (Table 

2). While it’s overall success rate at 2.5 Å backbone RMSD for the top 10 solution is 66.6% 

(28/42), when considering only peptides with 9 or more amino acids the success rate drops top 

35% (7/20). ADCP on the other hand maintains its 85% overall success rate on the subset of 

peptides with 9 or more amino acids. 

Table 2. Success rates at 2.5 Å backbone RMSD considering top 10 solutions. Out of the 42 

peptides, 20 have more than 8 amino acids (48%) and are classified as “longer peptides”. 

bbRMSD ≤ 2.5 Å  ADCP HPepDock 
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All 85.7% 66.7% 

Longer peptides 85.0% 35.0% 

 

A possible explanation for this could be that for longer peptides, the conformational space, which 

increases exponentially with the length of the peptide, eventually requires a prohibitively large 

numbers of conformers to be used in ensemble docking methods. ADCP models the peptide 

flexibility during the docking process thus it is less affected by increasing peptide lengths. ADCP 

maintains a consistent success rate across the peptides lengths in this dataset.  

On the smaller Glide SP data set, ADCP performs similarly to other methods for both holo (19 

systems) and apo (10 systems) receptor conformations, as shown in Table 3. 

Table 3. Success rates on the Glide SP-PEP dataset. Among the 19 complexes in the dataset, 10 

receptors have apo conformation available. Here a docking is deemed successful if one of the top 

10 solutions has an interface RMSD (iRMSD) lower than 2.0 Å or 3.0 Å respectively.  

iRMSD ADCP FlexPepDock Glide SP-PEP HPepDock 

holo 
≤ 2 Å 13 13 11 12 

≤ 3 Å 15 13 13 15 

apo 
≤ 2 Å 4 6 4 5 

≤ 3 Å 8 6 4 8 

 

Reliable docking long peptides and protein segments 

Currently available peptide docking methods have mostly been tested and benchmarked on small 

and medium-sized peptides up to 15 amino acids in length. However, a considerable portion of 

protein protein interactions are mediated by flexible protein loops, disordered chains segments, or 

intrinsically disordered proteins, involving sequences that can easily exceed 15 amino acids. 

Therefore, we tested ADCP on a set of 11 complexes containing peptides with 16 to 20 amino 

acids in length. For these dockings we performed 80 MC simulations, allotting 7xN million MC 

moves (where N is the number of amino acids in the peptide) to each run.  The docking poses 
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from the 80 MC runs were clustered using contacts with a cutoff value of 80%. Results are shown 

in Table 4.  

Table 4. Docking results for long peptides and protein segments. 

PDB ID Length Torsions 
Fraction of native contacts 

Top 1 Top 3 Top 5 Top 20 All 

2IVZ 16 51 0.73 0.73 0.73 0.73 0.80 

2OBH 16 74 0.89 0.89 0.89 0.89 0.89 

2XAP 16 65 0.03 0.52 0.52 0.53 0.58 

4AK4 16 53 0.59 0.63 0.80 0.83 0.89 

5UWI 16 58 0.76 0.80 0.80 0.80 0.80 

5N4B 17 62 0.24 0.24 0.46 0.46 0.51 

6CIT 17 72 0.32 0.71 0.71 0.71 0.71 

1CM1 18 74 0.94 0.94 0.94 0.94 0.94 

4YZ6 18 79 0.81 0.81 0.85 0.90 0.90 

4RS9 19 83 0.05 0.49 0.54 0.78 0.78 

2F31 20 75 0.66 0.66 0.66 0.66 0.66 

Avg. fnc 0.55 0.67 0.72 0.75 0.77 

fnc > 0.5 percentage 63.6% 90.9% 90.9% 90.9% 100.0% 

 

Considering only the top-ranking solution, ADCP identifies solution with at least 50% native 

contacts for 7 out of 11 complexes (63.6%). Within the top 5 solutions, the success rates increase 

to 90.9% (10 out of 11 systems). Figure 4 shows some examples of docked pose with respect to 

the crystal structure along with the fraction of reproduced native contacts. 
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Figure 4. Comparison of selected docked poses (cyan) and experimentally determined structures 

(magenta). The receptor surface is provided for context and colored using a polarity scheme 

developed by Dr. D. Goodsell. These Figures are generated using PMV 1.5.7 (Sanner, 1999) and 

MSMS (Sanner et al., 1996). 

ADCP demonstrates a robust ability to redock long peptides and protein segments. With more 

MC replicas and more steps for each replica, ADCP could potentially be applied to even longer 

peptide-like segments.  

It is noteworthy that the current scoring function in ADCP has not been optimized or calibrated 

for protein-peptide interactions. The interaction energy between peptide and receptor relies on 

AutoDock4 affinity maps that were initially developed and calibrated for docking small, drug-like 

molecules. While we have started incorporating peptide-specific elements, such as a potential for 

Ramachandran backbone angles into our scoring function, further refinements of the current 

scoring function could improve docking success rates.  Alternatively, re-scoring top-ranked poses 

with scoring functions designed for protein-peptide interactions (Huang and Zou, 2008; 

Spiliotopoulos et al., 2016) could also improve the ranking of the docking predictions. 
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Timing 

ADCP is computationally efficient compared with other de novo methods. Based on 3 million 

MC moves per amino acid, a MC search typically takes from ~10 minutes for a 5-mer to ~1 hour 

for a 12-mer, using a single thread on an Intel Xeon E5-1620 processor (2014). These times are 

rough averages and can vary depending on the peptide sequence. See Table S2 for a detailed 

timing results on LEADS-PEP dataset. Each MC simulation can be run independently and thus 

the MC can be trivially parallelized locally or on high performance computing clusters. The time 

for the final clustering is a function of the clustering cutoff but typically only takes a few minutes. 

While HPepDock and other ensemble docking methods requires less computational resources, 

ADCP achieves better success rates especially for longer peptides. HPepDock remains a powerful 

peptide docking tool for medium size peptides. 

Conclusions 

In this paper, we presented ADCP, a novel approach for predicting protein-peptide interactions 

for peptides of substantial length. The approach leverages an algorithm developed initially for 

protein folding and combines it with a representation of a rigid receptor developed for docking. 

With a success rate of 85.7% on the LEADS-PEP dataset when considering the top 10 

predictions, ADCP outperforms leading peptide docking approaches. Moreover, we show that 

ADCP is able to dock peptides with up to 20 amino acids to their receptors. ADCP expand the 

fully-flexible peptide docking to predict certain types of protein-protein interactions, e.g. 

disordered tails or flexible protein loops interacting with itself or another protein. 
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