
Scientific Workflows
Using Vision

Michel Sanner, Ph.D. (TSRI) TSRI

Instructor:

AutoDock & MGLTools 2013 Workshop, University of Lübeck, Sept. 16-20 2013

Overview
• Part 1: Introduction to Vision (M. Sanner)

• Basic interactions, basic networks, ImageViewer

• Part 2: Building an application (M. Sanner)

• Writing nodes, User Library, User panels, moving
widgets, noGUI execution

• Part 3: Extending Pmv (M. Sanner)

• Extending Pmv using Vision, Icosahedral capsid

• Part 4: Advanced topics (M. Sanner)

• Volume, Student applications, wrap-up

Part 1 Overview
• Installing and starting Vision
• Interacting with the Vision GUI

– GUI elements
– Mouse bindings

• Building Networks
– Image Viewer
– . . .

Installing Vision
http://mgltools.scripps.edu/download

Installing Vision

Vision: GUI elements
Node LibraryMenus Node Category Node

Programming Canvas for Network 0Current network name Network 0

Node Documentation
NOTE Node documentation displays as tooltips

Vision: GUI elements

Create new
network

Load network
from file

Merge network from file
Into current network

Load libraries

Print network

Save network

Minimal
run

Pause
execution

Run
network

Immediate
mode
toggle

Stop
execution

Detached
run

Stop
detached
execution

Vision: GUI elements

Run new network
In debug mode

Show execution
Time GANTT chart

Step to
next node

Cut, Copy, Paste
Selected nodes

Search nodes by name
in loaded libraries

Display advanced
Search interface

Libraries

Some Vision node libraries:
- Standard: default Vision node library
- Pmv: Vision interface to Pmv
- Imaging: Interface to the Python Imaging Library (PIL)
- Matplotlib: 2D graphing library
- MolKit: working with biological molecules
- Volume: working with 3D regular grids of scalar data
- Ipython: Vision node for using IPython parallel computing
-3D Visualization: Vision interface to DejaVu
- Symserv: working with point symmetry operators
- Web services: Vision nodes for Opal web services servers
- Adt: Vision interface to AutoDockTools (ADT)

Loading Libraries

Using the Menu Using the button

Dynamic discovery of libraries

Static list of libraries

Exercise: locate a node by name

Task: Find the Dial node in the Standard library

Solution:
1 – left click in the search box (A)
2 – type dial <enter>.

notice how the Dial node is temporarily highlighted in the library
if you missed it, type <enter again>

Adial

Alternative solution:
1 – left click in the Input category of the Standard Node library
2 – type the letter “d”

notice how the category scrolls to show the Dial node

Exercise: drag and drop a node
Task: Drag and drop a Dial node on the programming canvas

1 – left click on the Dial node in the Input category of the Standard library
2 – drag the mouse to the canvas (without releasing the button)
3 – release the button where you want to place the node

Left click on node Drag node to canvas Release

Vision Node

Read Image

Input Port
Name: filename
Type: string
Required: True
SingleConnection: True

Output Port
name: Image
Type: image

‘lena.jpg’
‘lena.jpg’

def doit(self, filename):
import Image
if filename:

im = Image.open(filename)
if im:

self.outputData(image=im)

Notes
Dial Widget:
Feeds data to an input port

Input ports
At the top

Output ports
At the bottom Port tooltip provides name,

Data type and value for output
Ports

- Port shape and color indicate data type. Examples of datatypes:
string, int, image, list, boolean, …

- Sometimes ports with different data types can be connected
is the None data type, i.e. any Python object is accepted
such ports will “morph” to the incoming data type

- Input ports can be “required” or “optional”. Valid data is
necessary on “required” ports for a node to run

Providing Data to Ports

File browser Widget is
Bound to the filename
Input port

Read Image node configured
to receive the file name from
a parent node

Data can be provided through a connection from an output port
of a parent node or from a widget bound to the port.

Read Image node configured
to receive the file name from
a a file browser widget

Binding and Unbinding Widgets

File browser Widget is
Bound to the filename
Input port

The filename Input port
Becomes exposed at the
Top of the node, allowing
A name computed in the
Network to be passed to
The node

Widget can
be unbound

- Unbound widget can be rebound
- Widgets are for interactive user input

Exercise
Task: Drag and drop a Print node on the programming canvas

1 – left click on the Output category of the Standard library and type “p”
2 – click on the print Node and drag it to the canvas and release the button

Exercise
Task: Connect the output of Dial to the input port of Print

1 – left click on the Output Port of the Dial node (A)
2 – drag the cursor (without releasing mouse button). A green line is drawn.
3 – move cursor close to “print” node’s input port. When you are close the line

will snap to the port
4 – release the mouse button to create the connection

Left click on
output port

Drag green line
To input port

ReleaseGreen line snaps
to input port

Port type
morphed
to float

Exercise: modifying parameters
Task: Modify the Dial value

Note that:
- values are printed to the shell

1 – click on the handle and drag the cursor
OR with the cursor over the dial type numbers

Task: Prevent network execution on new data
1 – Toggle the Toggle Immediate icon in the toolbar

Modify the Dial value and note that
values no longer print to the shell

Notes: node outlines
Node outlines:

- red: running

- orange: tried to run but missing data

- sick green: node failed

Turn off outlines using Edit-> Flash nodes when run

Exercise: Run Network

Task: Run the whole network, independently of data status

Note that dial value is printed to the shell each time you run

1 – Click on the Run button in the tool bar

Task: Make minimal run, i.e. run only nodes that have new
input data (and their children)

Note that dial value is printed when the dial has a new value
but nothing is printed if the value of the dial is unchanged

1 – Click on the Minimal Run button in the tool bar

Exercise: selecting
Task: Select the dial node

1 – Left click on the canvas background
2 – drag the cursor to draw a box around the Dial node
3 – release the mouse button to toggle nodes between selected and deselected mode

Left click on
background

Drag red box
around nodes

to select

Release to toggle Dial node
from deselected to selected

-Left click on
background
to clear the
selection
- Ctrl-A
selects all

Exercise: move nodes and connections
Task: move the Dial and print nodes together

1 – select nodes to move
2 – middle click on canvas background and drag cursor
3 – release the mouse button to toggle nodes between selected and deselected mode

Note: using the middle mouse button on canvas
background with no selection scrolls the canvas

Exercise: move a single node
Task: move the Dial node alone

1 – select both nodes
2 – Shift left click on the node background. This node becomes temporarily selected.
3 – drag cursor, the node moves along.
4 – release the mouse button. The previous selection is restored.

Exercise: copy-paste parts
Task: duplicate the dial-print network

1 – select both nodes. Note the copy button in the toolbar becomes active.

2 – click on the copy button. Note the paste button becomes active.

3 – click on the paste button. Note the pasted nodes are now selected and can
be moved

Exercise
Task: delete a connection

1 – right click on the connection between the pasted Dial and print nodes
2 – choose delete in the menu

Exercise: deleting
Task: delete a single node

1 – right click on the selected print node
2 – choose “Delete” in the menu

Task: cut multiple nodes and connections

1 – select 2 nodes
2 – click on the cut icon in the tool bar

Task: delete all nodes

1 – use Ctrl-A to select everything in the network
2 – right-click on a selected node and chose “Delete”

Exercise: loading a library
Task: load the Python Imaging library (PIL)

Using the button bar
1 – click on the “load library” icon

2 – select “imagelib”

Exercise: Image viewer network
Task: create a network to display an image

1 – locate and instantiate a “Read Image”node
2 – locate and instantiate a “Show Image” node

Note that a new window is created. It will hold the image.
3 – Connect the output of Read Image to the input of Show Image
4 – click on the file browser icon I the node

5 – navigate to Desktop/TutorialData/frames/ and select frame0000.png

Exercise: scale image
Task: modify the network to allow scaling the image

1 – locate and instantiate the scale node
2 – delete the connection between Read Image and Show Image
3 – connect Read Image to input of Scale and output of Scale to Show Image
4 – modify scale value

Exercise: rotate image
Task: modify the network to allow rotating the image

Note how sharp edges become jagged

Exercise: rotate image
Task: fix image edges using rotation interpolation filter

1 – read documentation string of the Rotate node. Notice the mention of a filter. Since
the filter port is not visible it must be bound to a widget. Since the widget for filter is not
visible in the node it must be in the node’s Parameter Panel
2 – right-click on the rotate node and select Parameter Panel.
4 – in the parameter panel choose BICUBIC

Network Items Menus
Right click on
network items

(i.e. nodes, ports,
widgets, connections,

Networks)
to display

their menus

Node Menu

Run this node and its children

Displays a window containing
widgets associated with this node

Replace node with a fresh copy

Copy, Cut, Delete this node

Start the node editor

Freeze this node.
Frozen nodes do not run

Displays a run port on
the right side of the
node and a trigger port
on the left side

Port Menu

Show the data on this output port

Display window for inspecting
data content

Start port editor

Widget Menu

Display option panel
Only for Dial and Thumbwheel
Start widget and port editor
Show port at top of node
Move widget to node or panel

Connection Menu

Delete connection
Hide connection
Toggle connection’s blocking
flag. Non blocking means a child
can execute before the parent has

Network Menu

Exercise: browser 1
Task: Build an image browser to look at the images located

in the movieFrame directory on the desktop

0 – delete content of network
1 – locate and instantiate a NumberedName node
2 – set the directory to Desktop/TutorialData/frames
3 – set the base name to ‘frame’
4 – set padding to 4
5 – locate and instantiate a ThumbwheelInt node outputting an integer
6 – connect the output of ThumbwheelInt to the number input port of

NumberedName
7 – locate and instantiate a Read Image node form the imaging library
8 – unbind the file browser widget from the filename input port in Read Image
9 – connect the filename output of the NumberedName node to the filename

input port of the read Image node
10 – add the show Image node and connect the output of Read Image to the

output of Show Image

Exercise: browser1

Use Edit -> Color node by library to get node colors

Task: Build an image browser to look at the images located
in the tutorialData/frames directory on the desktop

frame

Exercise: save network

Task:
Save the network

1 – Click on the save button on the tool bar
2 – navigate to Desktop
2 – replace Network0_net.py by browser1_net.py in the browser
3 – click on save

The network name changed to browser1

1 – delete the thumbwheel node
2 – locate the range node, read its documentation and instantiate one to create a list

of numbers ranging from 0 to 100
3 – locate and instantiate an iterate node
4 – send the list created by range into the iterate node
5 – connect the oneItem output port of iterate to the number input port for the

NumberedName node
6 – Run the iterate node

Exercise: iterate over images
Task: make the network iterate over the file numbers

Task:
Save the network as
“browser2_net.py”

frame

1 – delete the thumbwheel node
2 – locate the range node, read its documentation and instantiate one to create a list

of numbers ranging from 0 to 100
3 – locate and instantiate an iterate node
4 – send the list created by range into the iterate node
5 – connect the oneItem output port of iterate to the number input port for the

NumberedName node
6 – Run the iterate node

Exercise: iterate over images
Task: make the network iterate over the file numbers

The frame are not found !
Once a the network is saved, relative paths in the network
will be interpreted relative to the SAVED location.
6 – set the directory in NumberedFrame to TutorialDat/frames
7 – run the network

Exercise: save MPEG
Task: save the sequence of images as an MPEG movie

1 – locate and instantiate Record MPEG Movie
2 – feed the image to the first input port
3 – connect the begin and end output ports of iterate to the begin and end

input ports of Record MPEG Movie
4 – run the iterate node

Task:
Save the network as
“saveMPEG_net.py”

frame

Exercise: Play back movie
Task: play the MPEG movie

1 – locate and instantiate Play MPEG node
2 – unbind the widget from its movieFileName port
3 – feed the movie name from the Record MPEG node into the Play MPEG node
4 – kill the MPEG player to end the Play MPEG node’s execution

Section 2: Overview

• Look inside a node and modify it
• User library of nodes
• Writing a new node
• User panels and moving widgets
• Command line execution
• Detached execution
• Macro nodes

Exercise: Node editor
Task: start the node editor on the Read Image node

1 – Start Vision
2 – Load the imaging library
2 – locate and instantiate a Read Image node
3 – Right click on the node’s background and select “Edit”

Notes: Node editor

Edit node name

Add/delete/edit
Input Ports

Add/delete/edit
Output ports

Edit widget
gridding

Edit node’s
function

Start port editor

Start widget editor

Delete port

Add port

Start code editor

Start widget
placement editor

Notes: Node editor

- The node name is Read Image
- 1 input port called filename
- 1 output port called image
- Note the input port is not visible at
the top of the node because it gets
its data from a widget which is placed
Inside the node.
-Double clicking on the node toggles
showing/hiding widgets in the node

Exercise: Code editor

- The arguments to the node’s function
are named after the Input ports

- Data is output using the
self.outputData(portName=value, …)

Task: start the code editor on the Read Image node

1 – check the Edit … check button in the node editor

Exercise: Node editor
Task: add an output port that will provide

the image size

1 – click on “Add Output Port”

- An output port called “out1” is created
- The port appears on the node
- Code is added to the function showing

how to output data on the port

Exercise: Node editor
Task: add an output port that will provide the image size

2 – modify the function to output “im.size” on the new output port

Exercise: Node editor

3 – Click Apply to set the function

OK does the same as Apply and hides the Code editor
Cancel hides the code editor without applying changes

Task: add an output port that will provide the image size

Exercise: Node editor

Task: read an image and verify that
the port outputs the dimensions

1 – read an image
2 – use the output port tooltip to look at the size

Note that the data type is None

Exercise: Node editor
Task: rename the new port ‘size and change its data type to ‘list’

1 – Click ‘edit port’ checkbutton for ‘out1’
2 – change the name in the port editor
3 – set the type to ‘list’
4 – click OK

Notes: Node editor

The port was renamed

The port’s icon has changed
reflecting the list data type

The example code was modified

Our modification is unchanged

Exercise: Node editor
Task: fix the function after renaming the ‘out1’ port

1 – replace ‘out1’ by ‘size’ in the function
2 – click Apply
3 – use port’s tooltip to verify that the port name has changed

Exercise: Node editor

Task: add the ability to output a thumbnail of the image
upon request

1 - Add an input port allowing to specify whether a thumbnail is wanted or not:
1.a – click on ‘Add Input Port’ (Note the new argument in the code editor,

and the new port on the node’s icon)
1.b – click on ‘edit port’ for the newly added port
1.c – change the name to ‘thumbnail’ and the data type to ‘boolean’

in the port editor
1.d – click OK

Exercise: Node editor

2 – Bind a check button widget to the new input port
2.a – click on ‘edit port’ for the ‘thumbnail’ input port
2.b – select NECheckButton for the type of widget
2.c – select ‘node’ for where to place the widget
2.d – click OK

Task: add the ability to output a thumbnail of the image upon
upon request

Exercise: Node editor

3 - Name the widget
3.a – Click on ‘widget grid config’ in the node editor
3.b – Type “make Thumbnail” in the name field
3.c – click OK

Task: add the ability to output a thumbnail of the image upon
upon request

Exercise: Node editor

4 – add an output port for the thumbnail image
4.a – Click on ‘Add Output Port’ (Note new output port on the node’s icon)
4.b – Click on ‘edit port’ for

the newly added port
4.c – change the name to

‘thumbnail’ and the
data type to ‘image’
in the port editor

Task: add the ability to output a thumbnail of the image upon
upon request

Exercise: Node editor

5 - Edit the function to use the thumbnail argument and click Apply
6 – use show image to look at thumbnail

Task: add the ability to output a thumbnail of the image upon
upon request

Exercise: Node editor

Task: save network with modified node

Task: reload network and verify all modifications

1 - use File -> Save …
2 - save as ‘modif_net.py’

1 – click on the load network icon in the tool bar
2 – load the network called modif_net.py
3 – verify that all added input and output ports are restored
4 – verify the node’s function has the modifications

The loaded network as a trailing ‘1’ in its name
to make the name unique

Exercise: Node editor
Task: make the thumbnail size a parameter controlled

by a thumbwheel widget

1 – add input port with good name and type integer
2 – bind a thumbwheel and place it in the node
3 – modify the function to use the value provided by the port

Exercise: User library

Task: save the modified Read Image node in our own library
1 – delete modif1_net.py and modif_net.py
2 – right-click on the node’s background and select “save as customized node”
2 – navigate the file browser to the Input folder of “MyDefaultLib”
3 – edit the file name to be “MyReadImage.py”
4 – click on Save

Notes: User library

The library is automatically loaded

The node appears in the Input category

Exercise: Writing a node

Task: write the Read Image node starting from a node template

1 – locate and instantiate the Generic node
2 – use the node editor to re-create the Read Image node

- add an input port called ‘filename’ of type string
- bind an NEEntryWithFileBrowser widget and place it in the node
- add the name ‘filename’ to the widget
- add an output port called ‘image’ of type image
- complete the node’s function

3 – save node in MyDefaultLib - Input

The original Read Image
node uses Image.open
Image is imported in the
file defining the node
In your node you will have
to import Image

Exercise: Looking at the source code

Task: study a source code of the node we saved in the user library

1 – navigate to
C:\Documents and Settings\rctraining\.mgltools\latest\Vision\UserLibs\MyDefaultLib\Input
2 – right-click on MyReadImage.py and select open with IDLE

1 – navigate to
~/.mgltools/latest/Vision/UserLibs/MyDefaultLib\Input
2 – right-click on MyReadImage.py and select open with IDLE

Documentation string

Exercise: User Panel

Task: create a panel that provides selected widgets from a network

1 – load the saved network “saveMPEG_net.py”
2 – create a user Panel using Edit -> Create user panel

(name the panel FramesToMovie)
3 – use the widget menu to move the following widgets to the panel

directory from NumberedName node
MPEG file name from the Record MPEG movie node

4 – middle-click on widget in panel and drag to move it around

Notes: User Panel

The panels allows:
- running and stopping the execution
- showing/hiding the network

Task: save network as saveMPEGPanel_net.py to Desktop

Exercise: command line execution

Task: run the network from the command line using Vision

1 – save the network with the panel as “saveMPEGPanel_net.py”
2 – start a DOS command

3 – In the DOS window type:
vision ..\saveMPEGPanel_net.py

- Use the Tab key for automatic completion
- Note that the network comes up with the Vision GUI

Exercise: Network Execution

Task: run a network from the command line as a program

1 – In the DOS window type:
..\saveMPEGPanel_net.py - - help or –h

2 – In the Dos window type:
..\saveMPEGPanel_net.py

The help message display info about command
line options including parameters that can be set
From the command line.

Only the parameter panels comes up

Exercise: endless loop

Task: build a network with an endless loop that will print the
value of a dial if the value is positive

1 – create a new network using the button bar
2 – turn off immediate mode using the button bar
3 – locate and instantiate a while node and set the condition to 1
4 – locate and instantiate a pass node
5 – connect the output of while to the pass node
6 – right click on the pass node and select “show special ports”
7 – locate and instantiate a Dial node
8 – right click on the Dial node and select “show special ports”
9 – connect the “trigger” special port of Pass to the “run” special port of Dial
8 – locate and instantiate an “If” node and set the condition to “value > 0.0”
10 – connect the dial output to the value in put port of the If node
11 – locate and instantiate a print node
12 – connect the _if output port of the If node to the print node
13 – turn immediate mode back on
14 – save network as endlessPrint_net.py

Exercise: endless loop

Task: run the network in Vision

1 – click on the run network button in the tool bar
2 – make the dial positive to print to the shell or negative to stop printing

Exercise: endless loop
Special ports:
- Left side of the node (run)
receives signal

- Right side (trigger) sends a signal
after running

Allow to trigger Dial execution each
Time Pass runs without actually
Passing data from Pass to Dial

Task: run the while node

When the dial is < 0.0 the print node
does not flash, when you move the dial
to a positive value it flashes

Task: stop network execution

Notes: detached execution

Exercise: detached execution
Task: run the network in a separate process

1 – click on the run detached button in the tool bar
2 – make the dial positive to print to the shell or negative to stop printing

Task: stop separate process

Macro nodes
- Macro nodes represent a network as a single node in
a parent network
- Data can be passed into the macro and come out of it
- Macros can be nested
- Macros can be added to libraries of Vision nodes

Task: load the MolKit library

Macro nodes

Task: use a Lines Macro to display a molecule
1 – locate and instantiate a Read Molecule node
2 – locate and instantiate a Lines Macro node

3 – locate and instantiate a Viewer node

4 – connect the Read molecule output to the macro input
5 – connect the macro output to the Viewer
6 – read the molecule TutorialData/2plv.pdb from the desktop
7 – click in the 3D viewer (black window) and type the letters r n c d
8 – use middle mouse button to rotate the molecule

The macro output date of type geometry defined in the
3D Visualization library which is pulled in automatically

A window associate to the Viewer node (black window)
is created. It can be used to display 3D geometry.

Macro nodes
Task: open the macro node

1 – Shift double click on the macro node (or right click and select expand)

2 – double-click on all expanded nodes to collapse them (hide widgets)

A new network called “Lines Macro” is displayed.

Macro networks have 2 special nodes “input Ports” and “output Ports”.
These nodes allow data to enter and exit the macro.

Task: close the macro node

1 – double click on the “input Port” node

Macro nodes
Task: create a new macro node

1 – Edit -> create macro or Ctrl-m
2 – name the macro “MyMacro”

3 – locate and instantiate a pass node inside the macro
4 – connect the first output port of the Macro input Port node to the input of pass
5 – connect the output of pass to the first input port of the Macro output Port node

You are automatically taken inside the macro network

Parent
network

macro
network

Macro nodes

Task: create a new macro node

In the parent network:
1 – instantiate a Dial node and send the value into the macro
2 –instantiate a print node and connect the output of the macro

Section 3: Overview
• Introduction to Pmv
• Building a viral capsids
• Running PMV commands in a Vision network
• Creating new PMV commands

Exercise: Viral capsid
Task: build the viral capsid of Polio Virus

1 – Start Pmv
2 – right-click on PMV Molecules and load Desktop/TutorialData/2plv.pdb
3 – select backbone atoms in 2plv
4 – invert selection in 2 plv
5 – undisplay lines for selection
6 – clear the selection
7 – start Vision by clicking on the Vision button in the toolbar

The Pmv node library has Vision nodes specific to PMV

Exercise: Viral capsid
Task: build the viral capsid of Polio Virus

4 – load the symmetry server library of Vision nodes

Exercise: Viral capsid
Task: build the viral capsid of Polio Virus

5 – build the following network

6 – run the network

Exercise: Viral capsid
Task: change the representation from lines to a coarse

molecular surface
1 – using the dashboard un-display the lines for 2plv
2 – execute the command Compute -> Coarse Molecular Surface from PMV menu

using default parameters
3 - place cursor on 3D viewer window and type ‘r’, ‘n’, ‘c’

The compute coarse molecular
surface command is implemented
as a Vision networks that is loaded
the first time the command runs

Exercise: Viral capsid
Task: color the surface by chain

1 – using the dashboard color 2plv by chains

Exercise: Viral capsid
Task: color the surface by depth in the capsid

Exercise: Viral capsid
Task: expand the capsid by translating each 5-fold copy

along its 5-fold axis
1 – expand the Icosahedral1 macro node
2 – display the 5-fold node’s parameter panel
3 – find the 5-fold axis values (0.000 0.525 0.851) in the parameter panel
4 – locate and instantiate a translate node
5 – display the translate node’s parameter panel
6 – find the translation vector 1 0 0 and replace with 0.000 0.525 0.851
7 – delete the connection between the 5-fold and the 3-fold nodes
8 – insert the translate node between the 5-fold and 3-fold nodes
9 – modify the translation length in the parameter panel of the translation node

(right click on the thumbwheel to increase sensitivity to 10 for better results)
10 – witness the capsid expand

Exercise: Viral capsid
Task: expand the capsid by translating each 5-fold copy

along its 5-fold axis

Exercise: Viral capsid
Task: add range and iterate node to automate expansion

Exercise: Viral capsid
Task: add range and iterate node to automate expansion

1 – unbind “vector length” widget in the parameter panel of the translate
2 – add range node from 0 to 100 in steps of 5
3 – add iterate node to iterate over range output
4 – feed value from iteration into “vector length” port

Exercise: Viral capsid
Task: build the TMV capsid

1 – delete the 2plv molecule
2 – load the Desktop/TutorialData/tmv/2tmv.pdb protein
3 – hide the lines and display a coarse molecular surface
4 – instantiate Pmv Viewer node
5 – instantiate a Choose Geom node
5 – connect the viewer to the choose Geom (the combo box will be populated)
6 – select root|2tmv|lines in the choose geom node
8 – Instantiate a Set Instances node (use the one from the 3D vis library)
9 – connect Choose Geom and Helix outputs to Set Instances
10 – double click on helix to display its parameter panel
11 – set copies to 50
12 – start changing the angle of the helix (values around 20 are good)
13 – interact with the molecule in the viewer (r n c and rotate)
14 – start changing the rise of the helix
15 – set the rise to 1.43 and the angle to 22.04
16 – color by Instances (using the dashboard)

Exercise: Viral capsid
Task: build the TMV capsid

Exercise: use Pmv cmds in Vision
Task: build a network to run the computeMSMS cmd

Run the MSMS command in Pmv first to see possible arguments
1 – in Pmv delete 2tmv and load tf_1.pdb
2 – in Pmv use the Compute -> molecular surface command

note the arguments that are possible include: surface name, probe radius, density,
per molecule, etc …

3 – click Dismiss
4 – in Vision: create a new network
5 – instantiate a Pmv node and select computeMSMS for the cmd:
6 – instantiate a Run_command node and display its parameter panel
7 – connect the cmd output port of the Pmv node to the Run_command (note what happens)
8 – instantiate a tf_1 node and connect the molecule to the new

input port on Run computeMSMS
9 – the surface gets computed after you connect
10 – vary the probe radius dial to higher values

Exercise: use Pmv cmds in Vision
Task: modify the network to compute a surface for

each amino acid

1 – instantiate a select MolFrag node to get a list of residues
2 – send the tf_1 molecule into this node and select Residue for level
3 – add an iterate node to iterate over the list of residues output by this node
4 – connect the oneItem output port of iterate to the compute MSMS node

Surface is computed for the
whole molecule but only the
patch for the last residue is
displayed

Exercise: use Pmv cmds in Vision
Task: modify the network to compute a surface for

each amino acid

5 – un-check the “perMol” check button in the computeMSMS parameter panel

6 – run the iterate node and watch the surface walk along the chain

Surface is now computed for the
for the set of atoms in the residue

Exercise: scale CPK radii by charge
Task: display CPK spheres scales y the atomic charge

1 – delete all molecules and load indinavir
2 – display CPK and color by atom types
3 – create a new vision network
4 – instantiate an indinavir node, Select MolFrag and Extract Atom Property
5 – send the molecule into select MolFrag with level set to Atom
6 – send the resulting AtomSet into Extract Atom Property and set prop. Name

to ‘charge’
7 – instantiate a Dial node and set it to 3.0 and an op2 node
8 – in op2 select operator to be ‘mul’ and check apply to elements
9 – connect the list of charges to the first input port of op2 and the dial to the second
10 – instantiate a Pmv Viewer node and a Choose Geom
11 – connect the viewer output to the Choose Geom node and select root|indinavir|cpk
12 – instantiate a Call method node and set the signature to “Set radii” <enter>
13 – connet the output of Choose Geom to the first port of call method
14 – connect the list of scaled charges coming out of mul to the second port

Exercise: scale CPK radii by charge
Task: display CPK spheres scales by the atomic charge

Part 4: Overview
• The Volume library
• The vizlib library
• The matplotlib library
• Student problems
• Wrap up

Working with volumetric data

Working with volumetric data

Boolean operation can be performed on masks to create complex masks
Here a spherical slab mask is created by XOR’ing 2 spheres

2D plotting
http://mgltools.scripps.edu/packages/vision/matplotlib/vision-networks-for-matplotlib

3D Visualization

3D Visualization

3D Visualization: GUI overview

Bind Mouse to
transform

Operations assigned
to mouse buttons

(changes with modifiers)

When checked 3D
Xforms apply to root

Geometry objects
hierarchy

Root geom
parent of all

geometries and
current object

Master geom
for all geoms

of a given molecule

Geoms created
by Pmv cmds

for that molecule

Reset Xform of
current object

Fit the scene
in the view

Set rotation
center to center

of the scene

3D Visualization: GUI overview
Select property panel to show

Object
property

panel

3D Visualization: GUI overview

Camera
property

panel

3D Visualization: GUI overview

Clipping planes property panel

Lights property panel

2D plotting
http://mgltools.scripps.edu/packages/vision/matplotlib/vision-networks-for-matplotlib
Desktop/doc/Examples/matplotlib

http://mgltools.scripps.edu/packages/vision/matplotlib/vision-networks-for-matplotlib

Matplotlib in DejaVu

